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Abstract
Quantum transport through an open periodic array of up to five dots is
investigated in the presence of a magnetic field. The device spectrum exhibits
clear features of the band structure of the corresponding one-dimensional
artificial crystal which evolves with varying field. A significant magnetically
controlled current flow is induced with changes up to many orders of magnitude
depending on temperature and material parameters. We propose a simple design
for measuring with current technology the magnetic subband formation of quasi
one-dimensional Bloch electrons.

1. Introduction

Single quantum dots are the solid state analogue of an atom, whereas the properties of coupled
dots may resemble those of molecules. Quantum transport through open quantum dots, being
an intriguing as well as extensively investigated topic [1], continues to provide new insights
into fundamental phenomena and fuels a wealth of nanoelectronic applications [1–8]. Arrays
of coupled dots may be considered as one-dimensional artificial crystals with the dot repeating
unit acting as the lattice basis. If the coupling is strong enough the Bloch states that are formed
yield an electronic structure that uncovers many similarities with the subbands of quasi one-
dimensional systems with a much reduced reciprocal lattice vector. It is also well known
that a uniform magnetic field applied to Bloch electrons yields magnetic subbands with an
overall different spectrum [9, 10]. In contrast to the lack of any impact in one dimension, in
two dimensions these form the famous Hofstadter butterfly [11]. The effect of confinement
in two-dimensional ribbons has been studied in [12]. The question remains open as to what
extent there exists an observable magnetic effect for the intermediate dimensionality, as in the
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case of an array of open quantum dots. Moreover, experimental evidence in the literature is
scarce [13, 14] and the effect of magnetic subbands is hard to isolate in the common set-up of
lateral semiconductor superlattices [15]. Hence, the prospect of measuring its properties in a
simple fashion is quite attractive.

In this study we consider small coupled-dot arrays that present distinct spectral properties
regulated via an applied magnetic field B . The electron transport exhibits bright and dark
windows reflecting an electronic structure that is reminiscent of the energy bands of the
corresponding linear artificial crystal. This unique feature allows us to explore the B-
dependence of the subbands of the quasi one-dimensional Bloch electrons. With varying
magnetic field, our calculations demonstrate qualitative (and quantitative) changes of the bright
and dark transport windows in the suggested array structure, thus yielding a direct signature of
magnetic subband formation in the magnetoconductance.

Coupled-dot arrays may also be used as elements in magnetoresistive devices [16]. Such a
design of either chaotic [7] or rectangular [17] quantum dots in alignment has been recently
realized with a split-gate technique. In particular, the experiments of [17] showed a large
magnetoresistance at a field slightly greater than the magnetic field Bc that corresponds to
an electron cyclotron radius equal to the size W of the dot, i.e. Bc = h̄kF/eW (where kF is
the Fermi wavevector). Despite the possible role of Bragg reflection in a periodic array, in
these experiments it is still unclear how just Bragg reflection of electrons would result in the
non-exponential drop of the conductance measured as the number of dots increases. In fact,
new conductance features such as enhanced reflection can be expected for B/Bc ≈ 1 purely
from the induced changes in the classical dynamics due to commensurability between the
cyclotron radius and W . Here, by excluding any other contribution to the magnetoconductance,
we expose the pure quantum mechanical effect of Bragg reflection of electrons propagating
phase-coherently across the dot array. Magnetic subbands form for any B/Bc < 1, thereby
suppressing the conductance due to Bragg reflection at the newly formed band edges. Hence,
as B varies, the fingerprints of single bands are exposed via a significant magnetoresistance
even at moderate field strengths.

2. Formulation of the problem

Figure 1(a) shows the set-up under discussion. We assume that square quantum dots of size
W are laterally confined on the surface of a semiconductor heterostructure by an electrostatic
field which creates effective hard wall boundaries for ballistically propagating electrons.
The coupled leads are modelled by quasi one-dimensional conduction band electrons freely
propagating along the x-direction with a Fermi distribution fK (E) = [exp(

E−μK

kB T ) + 1]−1,
μK = EF ± eVSD/2 being the chemical potential in the left (K = L) and right (K = R)
leads when a bias voltage VSD is applied. The point contacts bridging the dots have a square
geometry of dimensions Lb = D = 0.3W that are of the order of the Fermi wavelength
λF = 2π/kF. Although quantitative details differ, our conclusions are independent of this
simplest design.

We model the electronic structure via a single-band effective mass equation of electrons
in a magnetic field. The corresponding Hamiltonian is H = (p−eA)2

2m∗ + U(r), where m∗ is
the effective mass (fixed to 0.05me unless otherwise stated). The boundary conditions are
imposed via the confining potential U(r), which is chosen to be zero inside the enclosed area
in figure 1(a) and infinite outside. The Hamiltonian is discretized on a two-dimensional tight-
binding grid using the Peierls substitution for the vector potential A, and can be expressed in
the second quantization form [18]:

2



J. Phys.: Condens. Matter 19 (2007) 326209 P Drouvelis et al

a)

. . .D

y

xz
W L b

I II III

0

0.2

0.4

0.6

0.8

1

T

1 1.2 1.4 1.6 1.8 2
k

F
D / π

0

π

- π

q
L

b)

0

0.2

0.4

0.6

0.8

1

T

1 1.2 1.4 1.6 1.8 2
k

F
D / π

0

π

- π

q
L

c)

Figure 1. (a) Schematic representation of the discussed open array of quantum dots. (b) Upper
panel: field-free quantum transmission through a single dot (dashed curve) and the five-dot array
of (a). Lower panel: energy spectrum of the corresponding one-dimensional artificial crystal with
lattice spacing L = W + Lb. Note that flat energy bands do not contribute to transport since
electrons acquire zero group velocity. (c) Same as (b) for a magnetic flux � ≈ 0.7φ0 piercing the
unit cell. We recall that the integer part of kF D/π indicates the number of propagating channels in
the leads and q defines the Bloch vector of the periodic structure.

(This figure is in colour only in the electronic version)

H (r) =
∑

r

εrc†
r cr +

∑

r,Δr

(V e2π i A(r)Δr
φ0 c†

rcr+Δr + h.c.). (1)

Here, the c†
r (cr) define a set of creation (annihilation) operators on each site of the grid and Δr

indicates the vector from site r to its nearest neighbours. The on-site energy is εr = 4V with
the hopping matrix element V = h̄2/2m∗a2; a is our lattice mesh constant. The magnetic field
B = Bz, which is applied in region II of figure 1(a) and is zero in regions I and III, is introduced
via the vector potential A in the Peierls phase factor; φ0 = h/e is the flux quantum. Charge
transport properties are calculated within the Landauer scattering approach which expresses the
current as follows:

I = 2e

h

∫ ∞

−∞
T(E)( fL(E) − fR(E)) dE (2)

in which T(E) is the quantum transmission function for injected electrons with energy E ;
the factor 2 accounts for spin degeneracy. We calculate T using our parallel algorithm of the
recursive Green’s function method [19]. As the system size increases one needs to invert a
block-tridiagonal matrix which scales linearly with the array length. For serial processing
this yields an additional cost that we avoid by distributing the scatterer’s domain over several
processors.
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Figure 2. Magnetically controlled flow demonstrated via the profile of the difference of the quantum
transmission for the field-free and B = 0.3Bc cases.

3. Results

The upper panels of figures 1(b) and 1(c) show, respectively, the field-free and B �= 0 quantum
transmission in the first open channel. Transport through a five-dot array is indicated by the
solid curves. In contrast to the single-dot transmission spectrum—plotted by the dashed line—
bright and dark windows are formed in which transport is either allowed or suppressed. These
compare well with the energy bands and gaps of the electronic structure of the corresponding
infinite linear artificial lattice obtained independently by direct diagonalization; this is shown
for zero and finite B in the lower panels of figures 1(b) and (c), respectively. Also evident in
those figures is the prominent dependence of the band structure with respect to the magnetic
flux piercing the unit cell. Broad energy bands contribute electron states that are almost fully
transmitted, whereas narrow sections exhibit weaker transmission signals. The remarkable
characteristic is that such a transmission spectrum is rapidly obtained for a quantum dot array
with just a few unit cells, as can be seen from the comparison of the upper and lower panels
of figures 1(b) and (c). In practice, this facilitates the realization of a device at length scales
comparable to the electronic phase coherence length at finite temperatures so that quantum
features do not wash out. It may seem natural that only a small number of dots can reproduce
the signatures of the artificial crystal, which is fully consistent with the fast convergence of
the transmission with length in similar systems for B = 0 (see, for example, [20]). It is less
straightforward to account for the interplay of magnetic flux with lattice periodicity for finite
fields, but the evident correlation of energy and transmission spectra strongly supports the above
physical interpretation of our numerical results.

In figure 2, we plot the transmission function difference between the field-free structure
and that at a field of strength B = 0.3Bc. The positive and negative parts reflect the newly
formed magnetic subband structure of Bloch electrons in the corresponding one-dimensional
artificial crystal which cause the bright and dark transport windows to occur at different spectral
positions. As discussed later, for a given geometry and Fermi energy (i.e. fixed kF D/π ) the
contrast in current flow due to the differing transmission spectra can also be traced as a function
of magnetic field to yield the evolution of the magnetic subbands. We note that there exist
broad energy ranges over which bright transport windows at non-zero magnetic field overlap
with dark areas at vanishing B , e.g. at kF D/π ≈ 1.5 and kF D/π ≈ 1.67. This feature marks
a mechanism for magnetically controlled current flow which can be realized up to the order of
liquid nitrogen temperatures, as will be shown below.

Although the system of natural units is practically convenient when estimating the upper
limit of the conductance as determined by the number of open channels kF D/π , which is

4



J. Phys.: Condens. Matter 19 (2007) 326209 P Drouvelis et al

0 0.1 0.2 0.3
B / B

c

0

0.01

0.02

0.03

|E
c

-
E

F
|(

a.
u.

)

0.3

B / B
c

dI
/d

V
(2

e2
/h

)

0.1  K
5 K
20   K

100  K

a)

B / B
c

dI
/d

V
(2

e2
/h

)

0.1 K ; σ1
0.1 K ; σ 2

b)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.1 0.2
0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3

Figure 3. (a) Linear-response magnetoconductance at various temperatures (kF D/π ≈ 1.5). Inset:
magnetic field dependence of the distance between the Fermi energy EF = 74.5 meV and the
band edge Ec accounting for the resonant structure of the low-temperature magnetoconductance
when crossing occurs at B ≈ 0.12Bc ≈ 0.45 T. (b) Typical magnetoconductance modified by the
presence of weak boundary disorder with relative strength σ1 = 0.027〈W 〉 and σ2 = 0.061〈W 〉.

Table 1. SI units at kF D/π = 1.5 assuming m∗ = 0.05me.

λF (nm) W (nm) EF (meV) Bc (T)

20 50 74.5 3.78
30 74 33 1.68
50 123 11.9 0.6

independent of the number of magnetic subbands that may occur in the dot array, at this point
it is instructive to interpret it with SI units. Assuming λF = 30 nm with m∗ = 0.05me

yields EF = 33 meV and Bc = 1.68 T. Regarding dimensions, each quantum dot should
be W ≈ 75 nm wide and the width of the lead D ≈ 22 nm at kF D/π ≈ 1.5. The lattice
spacing L is around 100 nm, defining a total array length of less than 500 nm for five coupled
dots. In a strict sense, these dimensions define the range of validity of our results regarding
temperature. Apart from the thermal broadening, the temperature controls the scattering
mechanisms determining the electronic phase coherence length. Since we have so far assumed
that electrons are coherently propagating, the array length must be shorter than the latter4. More
examples are presented in table 1. These show the interplay between linear dimensions and Bc.

In figure 3(a), we furnish our observations with the linear-response magnetoconductance
curve at various temperatures. An overall increase of the conductance with magnetic field
strength is clearly observed. A remarkable feature, central to this work, is the fine peak structure
of the magnetoconductance dI/dV at very low temperatures which relates to the formation
of the spectrum of Bloch electrons in a magnetic field. This is demonstrated in the inset of
figure 3(a). As the band structure is modified with the magnetic field, the edge of a single band
Ec crosses the Fermi energy EF at B/Bc ≈ 0.12. When the distance |Ec − EF| vanishes a
bright transport window is induced that gives rise to the resonant structure of dI/dV in the
sub-kelvin regime (thick line in figure 3(a)). Due to the well-pronounced peaks one could

4 In the ballistic regime the phase-relaxation length may be estimated according to [21]. For an electron density
corresponding to EF = 33 meV this is ∼900 nm at T = 40 K and reduces to ∼170 nm at T = 100 K, which is a few
times smaller than the length of our device.
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Figure 4. Linear-response magnetoconductance at T = 0.1 K and kF D/π ≈ 3.5. Insets depict the
band structure close to the Fermi energy at two selected magnetic field strengths ξ1 = 0.9 (upper)
and ξ2 ≈ 0.14 (lower) corresponding to two distinct conduction regimes with 1 < dI/dV < 2 and
2 < dI/dV < 3, respectively. The dashed vertical lines indicate the Fermi energy.

think of using these as a probe for the magnetic subband structure. At higher temperatures
thermal broadening causes averaging over a larger part of the spectrum including many adjacent
minibands and gaps. This increases the low-field conductance while simultaneously decreasing
the corresponding higher field values.

Below we would like to discuss some aspects regarding the effects of disorder in our
samples. Realistic devices may be experimentally prepared with electronic mean free paths of
the order of several μm [22]. These clearly allow for ballistic transport experiments. However,
to account for a possible residual departure from the ideal periodicity of our structure we
investigate two samples whose boundaries along the current direction are roughened with a
standard deviation σ ; in this case λF is much larger than the characteristic length scale of the
disorder. The magnetoconductance is shown in figure 3(b). For σ2 = 0.061〈W 〉 the disorder
potential imposes a fluctuation to the electron’s energy of ∼2%EF in the region of the square
dots and ∼30%EF in the interdot bridge sections. The latter order of magnitude is consistent
with the background disorder observed in the experimental set-up of [17]. The presence of the
disorder considered here modifies transport through the coupled-dot system in a two-fold way.
First, the disorder within the square dot sections perturbs the position of the bands such that
they may coincide with EF, as is the case in the magnetoconductance curve corresponding to
the sample with σ2. Second, the enhanced residual disorder at the bridge sections weakens the
coupling between the dots, thereby reducing the volume of the transport windows. Effectively,
this fact decreases the width of the bands and respectively the amount of transmitted current.
However, the overall resonant structure of the magnetoconductance curve is preserved.

Figure 4 shows the conductance profile at EF corresponding to a greater number of
propagating modes in the leads, yielding an upper limit of three. The magnetoconductance
reveals a much richer structure. However, it is uniquely distinguished into regions where the
maximum attainable value of the conductance differs depending on the number of dot-array
bands that the incoming electrons can populate. As illustrated using the insets in figure 3,
with varying magnetic field more magnetic subbands are formed at the fixed EF which can be
further occupied by the incoming electrons. As in figure 3, this effect leads to a pronounced
peak marking the magnetoconductance, again yielding information about the magnetic subband
structure at higher energies.
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Figure 5. Upper panel: ratio Ion/Ioff of the current flow in the on (B = 0.3Bc ≈ 1.13 T) and off
(B = 0) state as a function of temperature for an array of N = 2, 3, 5 coupled dots. Lower panel:
temperature dependence of the Ion/Ioff ratio for various effective masses m∗. kF D/π and EF are
the same as in figure 3.

For fixed kF D/π , it is interesting to analyse the effect of temperature and variations to the
effective mass as exposed by various materials. To this end, we define the enhancement (on)–
suppression (off) ratio of current flow Ion/Ioff in the linear response regime when we apply
the highest magnetic field we considered, i.e. B = 0.3Bc. In the upper panel of figure 5, the
temperature dependence of the Ion/Ioff ratio is shown for an array with a varying number N of
coupled dots. Remarkably enough the results are hardly changed with N � 3, in support of our
previous remarks. We observe that relatively large ratios in excess of 100 can be achieved for
temperatures up to ∼10 K and can be preserved to Ion/Ioff > 10 for temperatures up to ∼26 K.
Note that this behaviour may be drastically improved with a selective choice of materials and
geometry. A search in the parameter space for the latter is best done with an exhaustive analysis
of the calculated magnetic subband structure at each field value which is beyond the scope of
this study. Rather, in the lower panel of figure 5 we show that probing of the magnetic subband
structure in materials with lighter effective mass would be greatly enhanced and feasible at
higher temperatures.

4. Concluding remarks

A few additional comments regarding the effects of electronic interactions and spin are in order.
An estimation of the ratio of the single-electron charging energy U for each decoupled dot over
the interdot coupling t (determined mainly by D/W ) yields U/t < 1 for most dot modes with
wide energy bands forming in the array. In this case, there are small interaction corrections
to the conductance spectrum within the first conduction channel (kF D/π < 2) whose main
effect is to sharpen the resonances observed in the magnetoconductance (figure 3), while not
modifying the main transport mechanism [23]. At higher kF D/π interaction effects are even
less significant. Interactions may modify the transport profile for some distinct very narrow
bands at kF D/π < 2 for which U/t > 1 or if D/W is greatly reduced. Such an analysis of
weakly coupled dots is not within the scope of the present study. Finally, the addition of the
Zeeman splitting due to spin provides very small corrections to the energy and can be safely
neglected for the magnetic fields considered here.

To summarize, we have presented an investigation of ballistic transport through a finite
array of coupled dots from the perspective of a quantum mechanical magnetically tunable
mechanism that redefines bright and dark transport windows. The latter have been respectively
identified as the energy bands and gaps of the electronic structure of the corresponding
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one-dimensional artificial crystal despite the small number of dots. Thus, by tracing their
magnetic field dependence we showed that the precursor of magnetic subband formation in
the energy spectrum can be readily observed. The broad energy range of the transport windows
also reveals a well-defined mechanism that yields magnetically controlled currents with large
enhancement–suppression ratios which can extend up to several tens of kelvin depending on
material parameters. With present technology such a device can be realized within a region of
∼300 nm at a magnetic field of ∼0.5 T.
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